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We give a survey on the predictions of Coulombic phase transitions in dense
plasmas (PPT) and derive several new results on the properties of these transi-
tions. In particular we discuss several types of the critical point and the spinodal
curves of quantum Coulombic systems. We construct a simple theoretical model
which shows (in dependence on the parameter values) either one alkali-type
transition (Coulombic and van der Waals forces determine the critical point) or
one Coulombic transition and another van der Waals transition. We investigate
the conditions to find separate Van der Waals and Coulomb transitions in one
system (typical for hydrogen and noble gas-type plasmas). The separated
Coulombic transitions which are strongly influenced by quantum effects are the
hypothetical PPT, they are in full analogy to the known Coulombic transitions
in classical ionic systems. Finally we give a discussion of several numerical and
experimental results referring to the PPT in high pressure plasmas.

KEY WORDS: Plasma phase transition; Coulombic interactions; ionization
equilibrium.

1. FIRST ORDER VAN DER WAALS AND COULOMB TRANSITIONS

The theory of gases developed in the dissertation of van der Waals in 1873
may be considered as the starting point of the modern theory of phase
transitions. Van der Waals’ approach is based on a simple physical model



of interactions between particles which takes into account short range
repulsive as well as long range attractive forces. The van der Waals model
predicts below the critical temperature the possibility of coexistence of two
phases which differ from each other by the density of molecules. In con-
nection with the development of more strict theories it became clear that
van der Waals approach is restricted to relatively weak attractive forces
which either decay faster than 1/r3 or fulfil the ac conditions. Therefore the
applicability to Coulomb forces remained open.

In 1943 Landau and Zeldovich discussed new possibilities of phase
transitions connected with metal-insulator transitions in metal fluids in the
vicinity of critical points. (1) We have to mention in this connection also the
work of Mott on metal-insulator transitions in Coulomb systems. A first
systematic study of Coulombic transitions in plasmas was given by
Norman and Starostin in 1968. (2) The first order transition predicted by
these authors was named plasma phase transition (PPT). The PPT was
predicted as a possible result from the competition between effective
Coulomb attraction and quantum repulsion in the partially ionized dense
plasma. (2, 3) The qualitative picture was similar to the van der Waals model
where the phase transition is a result from the long-range attraction
between neutral molecules and their short-range repulsion. We remember
that the two phases in the van der Waals model differ from each other by
the density of molecules. The two phases in PPT have different number
densities of charged particles and different degrees of ionization. Atoms,
which are present in both coexistent phases, were treated originally as an
ideal gas. (2)

To get the first estimate of the critical temperature Norman and
Starostin (2) used the thermodynamic functions available at that time,
namely Debye–Hückel expressions for the chemical potential of the charges
with quantum corrections. (4) The expressions described an effective
Coulomb attraction and an effective quantum repulsion due to the uncer-
tainty principle. In the linear approximation in the density a critical tem-
perature Tcr=2660 and with the more realistic nonlinear Debye–Hückel
expression the value Tcr=10640 was obtained. We mention that both
expressions are valid only in the limit of small quantum repulsion
(l/rD) ° 1 (here l is the electron thermal wavelength and rD is the Debye
radius), and small non-ideality parameter c=e2n1/3

i /kT ° 1, where
ni is the ion number density, T is the temperature. Later estimates of
the PPT in hydrogen plasmas lead to higher values of the critical
temperature. (5–14)

The hypothetical phase transitions in multiple ionized plasmas were
treated first in ref. 15. A detailed study of He-plasmas was given in ref. 16.
Here we will consider only single-charged ions in gaseous plasmas.
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Since up to now the PPT in plasmas is not yet clearly identified exper-
imentally we plan to make as clear as possible the definition, the properties
and the conditions for a PPT. For this reason we develop a simple model
(a combination of the Debye–Hückel with the Van der Waals theory)
which shows a separate Coulombic transition—which is a PPT. Other
related phenomena in plasma systems are discussed only in brief.

Plasma-like phase transitions in the optically excited electron-hole
system in semiconductors were studied with similar methods. (5, 6, 17–19) The
experimental observations seem to point out that these instabilities of the
theory correspond to a real phase transition in semiconductors, this topic
will not be considered here in detail.

In more detail we will discuss comparison of the PPT to the known
transitions in classical Coulombic systems. The first results on phase tran-
sitions in ionic systems go back to the late sixties. In 1970 Voronzov
et al. (20) found a coexistence line and a critical point in the course of Monte
Carlo studies of charged hard spheres imbedded into a dielectric medium.
An analytical estimate of the critical point and the coexistence line
for electrolytes based on the Debye–Hückel theory was given in a short
note by one of the authors. (21) However a systematic theory of classical
Coulombic phase transitions including a comparison with numerical and
experimental data was given only in the pioneering work of Michael Fisher
and his coworkers. (22) These authors have also made an extensive inves-
tigation of the state of art in this field. (23) Summarizing these results for
classical systems we may say that theory and experiment (Monte Carlo
data as well as measurements on electrolytes) are in quite good agreement.
There is no doubt any more that a Coulombic phase transition in classical
systems exists. We will not repeat here all the arguments but refer to the
careful investigations of Fisher et al. (22, 23)

The classical Coulombic transition is due to a balance between a hard-
core repulsion and a Coulombic attraction. We will show here that the
PPT is a balance between quantum repulsion between point charges and
Coulombic attractions. In this respect PPT is a kind of quantum variant of
the classical Coulombic transition. If on one hand the existence of a
Coulombic transition in ionic systems is now well confirmed, there is on
the other hand no proof yet for the existence of a PPT in plasmas. At
present the problem of the existence of a PPT is still open. From the point
of view of the theory this is connected with the difficulties to derive an
accurate equation of state for nonideal quantum plasmas. From the exper-
imental point of view the difficulties are connected with the very high pres-
sures where the PPT could occur. However as we will point out here there
are now several experimental and numerical data which point to the
existence of a PPT in real plasmas.

Coulombic Phase Transitions in Dense Plasmas 863



2. DEBYE HÜCKEL APPROXIMATION FOR CLASSICAL AND

QUANTUM SYSTEMS

In order to describe Coulombic phase transitions one needs good
approximations for the thermodynamic functions in the regions where—
according to the first estimates—the phase transition is to be expected. As
we have learned from the theory of phase transitions in neutral gases,
already simple expressions as the van der Waals equation might give quali-
tatively correct results. We will show here that the Debye–Hückel expres-
sions for the thermodynamic functions together with the mass action law
provide an approximation which might serve a a zeroth approximation for
the description of Coulombic phase transitions. In their first work Norman
and Starostin (2) proposed for a first estimate of the critical temperature, to
use Debye–Hückel-type expressions (1 − cl/rD) for the chemical potential.
Here l is electron thermal wavelength, rD is a Debye radius, c 4 0.1 is a
numerical coefficient. The Debye–Hückel term describes an effective
Coulomb attraction, the (l/rD)-term represents in this approach an effec-
tive quantum repulsion due to the uncertainty principle. Norman and
Starostin (3) used also the original expression of Debye–Hückel for the
chemical potential (1+cl/rD)−1 which has the same accuracy if (l/rD)
tends to zero.

We will give now a systematic discussion of the Debye–Hückel
approximation for the classical and quantum cases. We consider a binary
Coulomb system with n+ positive ions (cations) and n− negative charges
(anions or electrons) per cubic centimeter n+=n− . The density of neutrals
is n0. The total density is n=n++n0=n− +n0. In the following we will use
the plasma notations, i.e., we call the negative charges ‘‘electrons’’ and the
positive charges simply ‘‘ions’’. In the Debye–Hückel theory for charged
hard spheres with the diameter a the excess chemical potential of the
charges of species i is given by the simple expression

mex
i =−

e2
i

2D0kT(rD+a)
(1)

The densities of free and bound particles are connected by the mass
action law (Saha equation)

n0

nine
=K(T) exp 1 mex

kBT
2 (2)
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where K(T) is the mass action constant which is given by Bjerrum’s
formula or certain modifications (5, 24) in the classical case. The osmotic
pressure is given by the formula

P/kT=ni+ne+n0 −
1

24p
o3f(oa) (3)

Here the Debye–Hückel function f(x) is defined by

f(x)=
3
x3
51+x −

1
1+x

− 2 log(1+x)6 (4)

The easiest way to transfer the Debye–Hückel approximation to
quantum plasmas is the replacement of the hard sphere diameter by an
effective quantum diameter of charges. According to the Heisenberg
principle a point particle with the thermal momentum

p̂== 8mkT
p

(5)

corresponds to a wave packet of size

dx=
(

p̂
=

p(

4 `2pmkT
. (6)

Identifying this with the effective diameter of the charges we get

a Q a(T)=
L

8
=

h

8 `2pmekT
(7)

In this so-called Lambda approximation (7, 10) quantum effects are
expressed by just one characteristic length, the thermal de Broglie wave-
length L in combination with Debye–Hückel type approximations. The
Lambda approximation agrees very good with the exact quantum-statistical
results for small densities for T < 105K. (7, 9) This approximation requires
that the plasma is nondegenerate i.e., ngL3 ° 1 (where ng denotes the
density of free particles). Furthermore only a small fraction of the atoms
should be bound in molecules b2 ° 0.5. The standard choice of the mass
action constant for quantum plasmas is the Brillouin–Planck–Larkin
expression

K(T)=L3s(T) (8)
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where

s(T)= C
.

s=1
s2(exp(−bEs) − 1+bEs) (9)

In this way the classical and the quantum case might be treated in the
present rough approximation by the same procedure. The easiest way to
check for stability of the system is the investigation of the sign of the
derivative of the pressure. The region where

“bP
“n

< 0 (10)

corresponds to thermodynamic instability. Equivalent is the condition (2, 3)

1“ni

“n
2

T
< 0 (11)

which is valid only if atoms are treated as ideal gas. Instability is restricted
to temperatures below the critical one which is defined by

T [ Tcr=16
e2

D0kBa
(12)

In the case of classical ionic solutions the parameter a is to be identified
with the diameter of ions. In the case of dense quantum plasmas we have to
introduce the quantum effective diameter a(T)=L/8. This way we have
shown that the PPT is the analogue of the known classical Coulombic
transition in ionic solutions. At least in the simplified theory given above
the classical transition in ionic solutions and the quantum PPT in dense
plasmas are in full analogy. In both cases the spinodal curve is given by

m1, 2=1b2

8
− b2+/ −51b2

8
− b2

2

− b261/2

(13)

where b=e2/kBTa(T) and m=e2o/kBT. In the quantum case we find the
corresponding estimate for the critical temperature

Tcr 4 12570 K (14)

In the case of electrolytic solutions or semiconductors the critical
temperature is much lower due to the appearance of the dielectric constant
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in the denominator. Another effect which decreases Tcr is the finite size of
ions. In order to describe the size of the ion cores in alkali or noble gas
plasmas we introduce an effective ion radius R, e.g., we have R 4 1.69A for
Cs-ions. Further we replace L/8 by

a(T)=L/8+R (15)

Assuming that R is temperature-independent we find now from
Eq. (15)

Tcr=12570 K
2

1+(1+(6R/paB))1/2 (16)

where aB=(/e2me is the Bohr radius. We see that a finite ion size may lead
to an essential decrease of the critical temperature to values far below
10000 K. For Cs-plasmas this estimate gives, e.g., Tcr 4 6000 K. Since this
value is still far above the observed critical point Tcr 4 2000 K we have
to search now for additional effects, which might reduce the critical
temperature.

3. COMBINATION OF VAN DER WAALS AND DEBYE–HÜCKEL

APPROXIMATION

In the Debye–Hückel type approximation derived in the previous
section the interaction of charges with neutrals and the neutral-neutral
interaction was not taken into account. This model might fail if the
interactions with neutrals have an essential influence. In the following we
consider for concreteness a plasma system. We treated the neutrals as ideal
particles in the simple approach given above which is analytically solvable.
The system of mass action laws might become rather difficult if one inclu-
des the interactions with neutrals or/and chemical equilibria between neu-
trals as, e.g., between atoms and molecules. A better starting point for such
more complicated cases is as a rule the expression for the free energy,
including a minimization procedure.

Combining the Debye–Hückel model with a van der Waals expression
and a contribution which takes into account the polarization of neutrals we
get for the free energy

F=n0kBT 5ln 1 n0L3
0

s(T)
2− 16+nikBT 5ln 1niL

3
i

gi

2− 16

+nekBT 5ln 1neL
3
e

ge

2− 16− kBTV
o3

12p
y 1oL

8
2

− kBTn0 ln(1 − n0B) − An2
0 − Wnn0 (17)
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Here the last three terms denote the contributions from the short
range van der Waals interactions and the contributions from polarization
terms. The polarization terms are of particular importance for the descrip-
tion of alkali and mercury plasmas. (25, 26)

Three free constants characterize now our model

– the repulsion of atoms: B

– the attraction of atoms: A

– the strength of atomic polarizability: W

In order to reduce the number of free parameters we assume in the
following W=0. We note that the free energy in this form defines a model
plasma with properties intermediate between van der Waals gas and a
Debye–Hückel plasma. The equilibrium composition is given by the non-
ideal Saha equation

1 − a

a2 =n L3s(T) exp 1 −
DI(a)
kBT

2 (18)

Here

DI(a)=
e2o `a

kBT(1+oa(T) `a)
−

(1 − a) nB
1 − (1 − a) nB

+log(1 − (1 − a) nB)+(1 − a) nA − Wn(2a − 1) (19)

is the lowering of the ionization energy.
As well known, real gases with attractive interactions show a first-

order phase transition described in the p–T plane by a critical point C1 and
a coexistence line ending in C1. Assuming that the Coulombic terms are
omitted in our expressions for the free energy a simple van der Waals type
expression is obtained with the critical point

TvdW=
8a

27kBb
, nvdW=

1
3b

(20)

The critical temperature is about 101 < Tcr < 103 for realistic values of
the parameters. For example Tcr 4 33 K for hydrogen. The degree of
ionization is practically zero in this region, i.e., there is no interference with
the PPT. On the other hand, at least for hydrogen, the PPT occurs in a
region where the number density of neutrals is rather low. We may assume
therefore that the assumption a=0, b=0 is justified in this case. Then, as
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shown above, the PPT may be treated in an analytical way. In the Lambda-
approximation we got in the previous section an analytical expressions for
the critical point of the PPT. (7, 19) By introducing the Bohr radius aB we
may transform the expression for the critical temperature to the form

Tppt=
e2

8kBaB
(21)

Further the critical density of the free electrons may be written as

nppt=a−3
B (22)

What happens in a system where both types of interactions are
present? Evidently now besides the classical first-order phase transition
typical for neutral gases a second first-order phase transitions due to
Coulomb forces may appear. The second one which might occur only at
rather high temperatures T > 104 K is the PPT. In Fig. 1 we give the
pressure isotherm of hydrogen plasmas at T=10000 K.

In the unstable region of the isotherm the plasma is separated into two
phases. The dense phase is highly ionized and the Coulomb interaction
dominates over the van der Waals forces. The less dense phase is only
weakly ionized and van der Waals interactions dominate. A more realistic
calculation of the coexistence line for hydrogen plasmas was given
recently. (28) A coexistence pressure of p 4 115 GPa was found in the cited
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Fig. 1. The isotherm T=10000 K for hydrogen plasmas showing the PPT instability.
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Fig. 2. The isotherm T=0.07 a.u. for an alkali-like model plasma with one transition of
mixed PPT-van der Waals type (van der Waals parameters of the model: a=30 a.u.,
b=30 a.u.).

work for T=10000 K; the corresponding mass densities of the coexisting
phases are r1 4 0.62 g/cm3 and r2 4 0.82 g/cm3.

In order to investigate the qualitative influence of the van der Waals
forces we studied a model plasma with increasing values of the parameters
a and b. Fig. 2 shows the isotherm T=0.07 a.u. and a=b=30 a.u.

In spite of the fact that these values are rather large we cannot detect a
separate van der Waals wiggle. Both attracting forces support each other
and lead to one phase transition approximately in the same density region
as the PPT. This is the situation we observe in nature for alkali plasmas.
At further increase of the values of the van der Waals parameters to
a=b=100 a.u. we observe two separate van der Waals loops as shown in
Fig. 3. This is the situation we observe for real noble gas plasmas. We are
to emphasize, that Figs. 2 and 3 have just illustrative character; in reality
we do not see two wiggles in one isotherm due to the drastic difference
between the critical temperatures.

Summarizing these findings we may state that in dependence on the
values of the van der Waals parameters we may obtain either a phase
diagram with two first order transitions (hydrogen and noble gas plasmas)
or a phase diagram where both transitions fuse to just one (alkali plasmas).
The existence of a phase diagram including a van der Waals type transition
and a separate metal-insulator phase transition was discussed for the first
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Fig. 3. The isotherm T=0.07 a.u. for a noble gas-like model plasma with a PPT and a sep-
arate van der Waals transition (van der Waals parameters of the model: a=100 a.u., b=100
a.u.).

time in 1944 by Landau and Zeldovich. (1) We repeat that the existence of
two separate phase transitions requires the validity of the inequalities

TvdW ° Tppt; rvdW ° rppt (23)

This is fulfilled for hydrogen and for noble gas plasmas. In the case of
alkali plasmas the van der Waals and the PPT transition have about the
same critical density and temperature. Therefore both transitions fuse just
to one with very specific properties. (14, 25–27)

4. DISCUSSION OF PLASMA PHASE TRANSITIONS

Considerable efforts were applied to obtain better plasma thermody-
namic functions for larger range of the nonideality parameter. We will not
go into the details of the theory here which are explained elsewhere. (7, 9, 10, 11)

The critical temperatures derived from more refined versions of the theory
lay in the region Tcr=14000–19000 K. (7, 8, 11) There is a scatter in the values
of Tcr, pcr and ncr, since the procedure of getting the thermodynamic func-
tions for large nonideality is not a unique one. Instead of going into details
on the several theoretical approaches we concentrate here on the physics
and the relation to experiments, to numerical simulations and to related
phenomena.
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Let us start with the experimental aspects. The existence of a PPT in
dense plasmas is still less clear than in classical Coulombic systems. This is
mainly due to the fact that pressures predicted for the coexistence line are
above 1 Mbar what is still hardly reachable in experimental situations.
However in the last time more and more experiments were performed
which cover the region of interest. (29 36) Experiments with shock-compressed
hydrogen and deuterium plasmas have verified that around 140 GPa and
3000 K a transition to a highly conducting state occurs. (29, 31) This is
approximately the pressure region where the coexistence line of the PPT is
expected. (28) A corresponding behavior of conductivity data has been
reported. (30) Pressure dissociation and ionization, which almost do not
depend on the temperature, become a dominant factor at 104 K and below
in hydrogen and deuterium fluid studied experimentally at high pres-
sures. (31, 34–36)

In order to compare theory and experiment in a more quantitative way
refined treatments of the phase transition induced by pressure dissociation
and ionization were given. (7, 8, 11, 13, 14, 28) Most of the possible species and
various interactions were taken into account to calculate the equations of
state. There is a certain discussion whether the model equations of state
reproduce reasonably well the recent experiments. However the theory
predicts in all variants a phase transition. with Tcr=14000–19000 K.
Excited states do not contribute significantly to the hydrogen partition
function in the intermediate range of temperatures.

Path integral Monte Carlo calculations and wave packet dynamics
also give some hints to the existence of the plasma phase transition. (37–43)

For example the validity of the thermodynamic expressions used was tested
by comparison with molecular simulation and experimental data for non-
ideal plasmas and limiting expansions for weakly nonideal plasmas. (43) The
problem continues to attract remarkable attention, for example at the
recent (June 2–7, 2002) ‘‘International Conference on Warm Dense Matter
and FEL Experiments’’ in Hamburg, Filinov et al. (44, 45) claim that they
‘‘present results of direct path integral Monte Carlo simulations which, for
the first time, provide first-principle support of such a phase transition in
dense hydrogen’’. It should be noted, however, that these particular PIMC
simulations yield rather low energy values for the ‘‘droplets’’ that appear in
the simulations. Kohanoff and Scandolo (46) discussed on this workshop the
same problem in a softer manner and presented their results of ab initio
molecular dynamics simulations. We mention these works as part of the
ongoing effort to simulate the PPT.

Let us discuss now in brief the phase transitions observed in alkali-
plasmas. As pointed out in previous sections the theory predicts for this
case that the PPT and the van der Waals transition fuse just to one
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transition. Near to the critical point the degree of ionization is low but dif-
ferent from zero. Coulombic interactions are present and influence the cri-
tical behavior, in spite of the fact that they do not play the dominant role.
The area of parameters close to the critical point of cesium was carefully
investigated. (25) It was shown that near to the critical point the ionization
landscape changes quickly and has a quite complicated structure. The
theoretical predictions which take into account the charge-atom interaction
(polarization effects) are in rather good agreement with the data. (26, 14)

The existing experiments for argon plasmas based on shock wave data
are also in satisfactory agreement with the theory. (34, 47, 48)

We will discuss now the problem of critical behavior and the critical
indices. For the classical case much attention has been devoted to this
problem. (23, 49, 50) For the PPT where quantum effects influence the critical
point, the problem of critical indices is still open. So far no experiments are
available which give reliable information about the critical properties of
hydrogen and noble gas plasmas. Experimental studies of classical electro-
lyte solutions revealed that Coulomb liquids characteristics differ from
those of simple liquids. Even if crossover was observed from classical
scaling laws to Ising scaling, it takes place much closer to the critical point.
The Ginzburg parameter, which characterizes the size of the Ising region,
turns out to be of 1–2 and more orders of magnitude less than for simple
liquids. So there is a remarkable difference in crossover range between
simple and Coulomb liquids. (23, 49, 50) Experimental study of crossover phe-
nomena in real plasmas and in particular in cesium plasmas might help to
find out if the critical point is of the plasma or gas-liquid kind. Additional
factors, which do not exist in electrolytes, namely, quantum effects and
charge-atom interaction can influence the crossover phenomena in PPT.

Michael Fisher (49) formulated clearly the challenge to the critical phe-
nomena theory: ‘‘Critical behavior is thoroughly understood in Ising
models alias lattice gases: But how far does that help our insight into the
critical region of continuum models and real fluids? In particular, what
causes some ionic solutions to exhibit van der Waals or ‘‘classical’’ critical
exponents, while other, so-called ‘‘solvophobic’’ systems are of Ising—
type?’’. It is evident that the difference between properties of various
liquids under similar external conditions can be attributed principally only to
the interaction potentials between the particles. However the Kadanoff–
Wilson theory of critical phenomena, which is based on the universality
hypothesis, neglects interaction potential peculiarities and appeals only to
large-scale properties, such as system dimension and Hamiltonian symmetry.
So other approaches are needed.

First of all Fisher points to the integral equation approach. But most
of the standard approaches to the theory of critical phenomena based on
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integral equation method fail. (49) Though both the Kadanoff–Wilson theory
and the integral equation approach are on equal rights, the first is based on
global treatment whereas the latter is related to the local Ornstein–Zernike
equation. For this reason Fisher puts the integral equation approach on the
first place in his hope to solve the problem of Coulomb criticality. However
there is a specific difficulty in the local approach which is connected with
the choice of closing relation in the integral equation approach. This diffi-
culty was attacked recently by Martynov. (51) He suggested an integral
equation which depends on the interaction potential and permits in prin-
ciple to define the critical indices and their dependence on the interaction
potential. Martynov (51) applied his local approach to the system of charged
particles. The critical indices obtained differ almost as much as twice from
van der Waals and Kadanoff–Wilson predictions. However the results
cannot be applied directly to electrolyte solutions since they do not take
into account solvent molecule influence, neither it can be applied directly to
dense plasma, since quantum effects are not taken into account.

Let us finally discuss several special problems connected with
Coulombic phase transitions. At first we mention the magnetic field
influence. It was shown recently that strong magnetic fields increase the
critical temperature. (52, 12) Another important effect is connected with non-
equilibrium phenomena. It was noted (53) that nonideal plasmas are usually
generated in non-equilibrium state with respect to plasma wave excitation.
This might complicate the theory (14) and the analysis of experiments.

At third we would like to discuss a new class of phenomena observed
in Cs-plasmas. (54) Though the standard cesium phase diagram is well
known (27), Recently a new phase state of Cs was observed by Holmlid
et al. (54–56) In experiments with thermoionic converters clusters were
observed first at 1300 K. These cluster were cooled and associated in
microdroplets. The microdroplets formed were fixed and measured at 70 K.
The number density obtained was about 1018 atoms/cm3. Holmlid (54) con-
sidered his results as an observation of the Rydberg matter predicted by
Manykin et al. (55, 56) Generally speaking Rydberg matter exists only at 0 K
temperature. At higher temperatures Manykin’s approach can and should
be combined with our non-ideal plasma treatment. In fact both approaches
enhance each other. The phenomenon might be connected with the idea of
isolated segment of metastable nonideal plasmas which was introduced into
the plasma thermodynamics long ago. (57) Supercooled nonideal plasma states
were a direct consequence of the PPT. (58) Manykin’s Rydberg matter, (55, 56)

Holmlid’s microdroplets(54) and plasma phase transitions (2, 3, 59) are various
facetsofCoulombicphenomena.Theexistenceof isolatedregionsofmetastable
nonideal plasmas is not an exceptional feature of cesium. Several authors (55–58)

suggested that this might be a more general feature. In fact Holmlid (54)
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observed his clusters in many other substances as well. The isolated region
of metastable nonideal plasmas is possibly an inherent part of the phase dia-
gram. This part complements the standard diagram and is superimposed on
it.

5. CONCLUSIONS

This work is devoted to plasma phase transitions (PPT) which are
determined by attractive Coulombic interactions and quantum repulsion.
The PPT occurs in the region of high pressures and temperatures, where
matter is at least partially ionized. At least in principal the PPT is an
analogue of the known Coulombic transition in classical ionic solutions. In
both cases the mechanisms are the same, the transition is due to the inter-
ference between a Coulombic attraction of the charges and repulsive forces.
The classical repulsion of ions at small distances is in the quantum case
replaced by Heisenberg and Pauli repulsion effects. We have shown above for
dense gaseous plasmas that in dependence on the values of the van der Waals
parameters of the neutral component we may obtain either a phase diagram
with two first order transitions (hydrogen and noble gas plasmas) or a phase
diagram where both transitions fuse to just one (alkali plasmas). In spite of
considerable efforts there is no final proof yet that the PPT really exists,
however new theoretical and experimental results seem to confirm this hypo-
thesis. One strong theoretical argument in favor of the PPT is the analogy to
the Coulombic phase transition in classical systems. For ionic solutions theory
and experiment (Monte Carlo data as well as measurements on electrolytes)
show a corresponding Coulomb transition. Therefore there is no doubt any
more that a Coulombic phase transition in classical systems exists. (22, 23, 49)

For quantum systems as, e.g., hydrogen plasmas the problem of the exis-
tence of a PPT is still open. The main reason for still unsolved problems are

• the theory of the PPT requires an accurate theory of dense quantum
plasmas, and

• the pressures where the PPT occurs are in the Mbar region what
leads to very difficult experimental problems.

We discussed here several results of theory and experiment which
point to the existence of a PPT in real plasmas and discussed the conditions
and parameter regions where the PPT is expected.
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